ON A THREE-DIMENSIONAL HEAT TRANSFER
PROBLEM FOR A FORCED CONVECTIVE FLOW

M. E. Podol*skii UDC 536.25

We consider the hydrodynamic and thermal boundary layers for the flow represented by
Fig. 2. Assuming that W « Uj, we obtain approximate formulas for the friction and the
heat transfer.

We consider a rotating tube 1 and inside of it a fixed tube 2, the latter containing a wide slot along
a generator (Fig. 1); there is no gap between the tubes., A liquid of some kind is pumped through the tube,
cooling the heated moving wall. If we disregard the secondary flows due to centrifugal forces and assume
the boundary layer thicknesses to be small in comparison with the tube radius, then the motion repre-
sented by Fig, 2 can be regarded as an analog of the flow in question, Here the plate 1, which is infinite
in the direction of the x axis and moving in that direction with speed U,, is separated from the flow (of
speed W) washing over it by the infinitely thin, fixed, thermally insulated plates 2.

We obtain an approximate solution of the hydrodynamic and thermal problems involved in determin-
ing the amount of heat given off to the flow by plate 1. The temperature T, of the moving plate is as-
sumed to be known. Similar problems arise in the study of the sliding of bearings,

1. In the absence of longitudinal flows (W = 0) the hydrodynamic problem was considered in [1-3].
In particular, it was shown there that the speed at the outer edge of the boundary layer cannot be ag-
signed arbitrarily but is determined from the equality of the frictional forces on the moving and the fixed
sections:

U =U,Vs, s=IL. : (1)

In view of the fact that the liquid is alternately speeded up by the moving plate and retarded by
the fixed plate, the boundary layer turns out to be periodic in x of period L. The layer thickness Oy
is of the order

Fig. 1 Fig. 2
Fig. 1. Schematic of liquid motion in the tube with a partially
moving boundary.

Fig. 2. Schematic of flow over a plate consisting of fixed and mov-
ing sections.
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8, ~ LRez"®, Re,=U,L/v. (2)

If W = 0, but W< U’ then the boundary layer can be divided into two zones. In the first zone,
situated near the wall, the influence of the longitudinal flow is small, so that direct use can be made of
the results obtained in [1-3]. The thickness of this zone is of order 8,. In the second zone the speed w
increases gradually to its limiting value W as y — «, while u decreases from U® to u = 0 (we assume that
u =0 for z < 0). By virtue of the assumption W «< U’ we have, over the major part of the boundarylayer,

e=0,/6 & 1. (3)
The speeds ﬁ, v, w in the second zone satisfy the equations
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and the boundary conditions can then be written approximately as follows:
a=U" w=0, v=uv,(x) fory—>0, u=0 w=W for yroo. (5)

Here vy is the v component at the outer edge of the first zone, where the integral of v, with respect
to x is equal to zero over an arbitrary interval of length L.

We can show that
wlUo =1 —w)W = a (x, y, 2). (6)

Applying the method of integral relations to Eqs, (4) and putting

0=1—159-405% n=y/b, . %)
for the boundary layer thickness in the second zone, we obtain
0, U O _ gv | 2w, 36 140
W T a w Taw T T ®)
Along the integral curves of the equation
dz = (Wiq,U?) dx (9
the quantity §, by virtue of Egs. (8), satisfies the equation
4 gy 2q50,
& w 10
We consider a function §%z) such that
ds - gy / 2g,v Y '
= ¥= | &+ -2 b=dk=2) | (11)

and we seek § in the form 6 = 6% + A,

Taking into account the aforementioned. properties of the flow in the first zone, we can show that A
~ 6y and, by virtue of relation (3), that § ~ ¢'. The latter, generally speaking, is valid at some distance
from the entrance edge of the plate where the condition (3) is already satisfied. If, however, we assume
that z » z,, or, equivalently, if we take z, =0, &6, =0, then Eq. (11) for 4 can be approximately extended
to zero values of z and may be written in the form

2g,vz

Equation (12) agrees with the expression given in [4] for the boundary layer thickness in the absence
of flow along the x axis; thus it shows, under the assumptions made above, that the hydraulic resistance
along the z axis and the profile of the velocity w can be determined for the boundary layer on the plate from
known formulas.
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2. Consider now the thermal part of the problem. The heat

" & balance equation may be written as follows:
g 9 oo
c O ury+ Lon) + - @n =2 ZL 13)
L M H Ox dy Oz poc dy
[N N
N;{‘ N The boundary conditions (n is an integer) are
L il (n+1)z P T=0 for §—-oo, T=T, for. y=0, nL<<x<<nlL I,
T/dy =0 for nL4+Il<<x<(n+1)L. (14)

Fig. 3. Integral curves of
Egs. (23) and (19). Further, we consider liquids with Prandtl numbers Pr = vpc
/A > 1, so that the thermal boundary layer thickness ¢ is small
compared to 6, and . Then, approximately, over the major part
of the boundary layer, for 0 <y < §
uml, wxky fo nlL<x<<nl-l
umky, wxkyy for nl+Il<x<<(n-+ 1)L, (15)
k, = 1.5W/8, &k, =1, (y=0)p.

We can show that, approximately,

3/2 —1/4 in? nk
_ oy~ MWo 1 s sin® mks
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k=1

Consider the segment nl. < x < nL + ], Noting that v(y = 0) =0, and taking the following dependence
for the temperature

T=T(), n=yb, ¢=1—1.51+0.5n, k)
we obtain, after integrating Eq. (13) with respect to y,

p B 1 8 @ 9O v 1 b
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Along the integral curves of the equation
dx = pdz (19)
we have, by virtue of relations (18),
dp 3 3 14 (8,3
42 ¥ -2 = L Pp
i T3 2 T ( 5 ) f (20)

Assume that at some point x =nL + 0, z =z, (see Fig. 3) the quantity &t = & is known. Integrating
Eq. (20), we find that along the integral curve C of Eq. (19) passing through this point

v=1—(—9) /" 21y

and, at the peint x =aL + -0, z =z}, of the curve C, we have

Y= 1 — (1 —1,) (z,/22)""%. (22)

Through the point x =nl + ], 2z =2', and the point x =nlL + [, =z =z} + AL infinitely close to it,
we draw integral curves vy and y* of the equation
k dx = k,dz. (23)

On the curves v and ' as guides we construct cylindrical surfaces whose generators are perpendicular
to the planey =0. These surfaces, together with the planes x =nL + ], x =(n + 1)L, y =0, and the
surface y = §;, form a volume V. We integrate Eq. (13) over V and apply the Ostrogradskii —Gauss
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formula of the resulting left-hand side, Taking into account the fact that u =~ U, = const for nL <x
<nL +1, we can obtain, to within a quantity of order 53,

— 6.
x=n’L+l~—0 s 6tn+1 - a.t x=(n-1)L40" (24)

2:2’1

6tn—{—l = 6tn’ 62!1 =9

Z:2n+1

From Egs. (22) and (24), with the aid of Egs. (20) and (12), we find a recursion relation for de~
termining ¢,

Vi1 = @alzny)” [1— (1 —,) 2/20™")]. (25)

Integrating Egs. (19) and (23), we can show that

'_ s : 1/3 .
<ﬁ_ji.=(13) S | WL (ﬂh} [1+ 0@)] ~ b2,

z, 14 a, Uy, \ Pr

2y —2, — 2, n ‘

n+: " Zn =__§__ (1 2 V 2, ( (‘]Wf ) [1+4 03] ~e. (26)
n on

An analysis of Egs. (25) and (26) shows that the function y,, which satisfies the recursion relation
(25), differs by no more thana quantity of order & from the solution of the equation

9 _3 LEEIZE §) s=q+aa

2 T8 T Tz \T+E
0.807s [ Ugz \'2 1 5
- 280 (W‘)L ) S W~ (27)
_ 13

obtained using the same initial conditions.

Equation (27) possesses the property that sufficiently large z /z, its solution does not depend on i,
=y(zg). Formulas for gy, similar to Eq. (12), obtained by the method indicated here, are valid for those
z = z; for which the inequality (3) is already satisfied. Further, as in the hydrodynamic part of theprob-
lem, we consider values of z > z,.

Assuming, as we did earlier, that the quantity &/ 6, is small, we obtain an approximate solution of
Eq. (27), which is independent of the initial conditions, in the form

P (2). (28)

It follows from this, in particular, that 3%@1/ 3~ 3u3/ 2, so that the solution obtained is valid as
long as the quantity » is small,

The solution (28) may be used to determine y(z) for all x in the intervals nL < x <nL +[. The
latter is ensured by the continuity of y(z) from Eq. (21) and the smallness of the increment Az'(see
Egs. (26) on each interval nL. < x < nL + ] of the integral curve of Eq. (19).

3. We calculate the heat-transfer coefficient from the moving plate. Determining 6; on the interval
nL < x < nL + ] with the aid of Eqs. (28), (27), (20), and (12), and using the relations (17), for the local
Nusselt number Nu = @z /A = 3z/26; we find

Nu=x""2Nu,, Nu, = 0.332Re/?Pr"?, Re, = V2. (29)
’ v

The formula (29) is not suitable if &; > 6y, i.e., if the quantity » is not small. In this case, at
least for ot > 6, we can obtain, for large Prandtl numbers Pr, with the aid of reasoning to a certain
extent analogous to the preceding,

Nu = s_'/sNuo. (30)

Equations (29) and (30) show that in comparison with the flow over the fixed plate (Nu = Nu,, [4])
the heat transfer, under the conditions of the arrangement shown in Fig. 2, turns out to be more inten-
sive, This is explained by the fact that in the latter case the speed in the boundary layer has, besides
that along the z axis, also a component along the x axis. Therefore the coolant liquid, passing nof only
through a heat emitting region but also a thermally insulated region, is heated on only a portion of the
path which it traverses. As a result there is a decrease in the thermal boundary layer thickness, and,
hence, an increase in the heat-transfer coefficient,
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NOTATION

is the velocity of movable plates

is the velocity at outer edge of boundary layer without longitudinal flows;
is the velocity of longitudinal flow;

is the relative length of movable plate;

are the hydrodynamic boundary layers thicknesses;

is the thermal boundary layer thickness;

is the temperature;

are the dynamic and kinematic viscosities;

is the value by formula (20);

is the value by formula (27);

is the heat-transfer coefficient of movable wall;
is the Nusselt number.

LITERATURE CITED

G. K. Batchelor, J. Fluid. Mech., 1 (2), 177-190 (1956).
W. W. Wood, J. Fluid Mech., 2, 77-87 (1957).

R. D. Mills, J. Roy. Aero. Soc., 69, 116-120 (1965).
E. R. Eckert and R. M. Drake, Theory of Heat and Mass Transfer [Russian translation], Goséner-

goizdat, Moscow- Leningrad (1961).

19



